METHODS OF USING A DIGITAL COMPUTER TO CALCULATE
THE HEAT-TRANSFER COEFFICIENTS OF PERIODIC
HEAT EXCHANGERS

V. 8. Balakirev and E. B. Manusov UDC 536.24:536.27

We propose a method of calculating the heat-transfer coefficients that is based on comparison
of the operational data and the equations of heat-transfer dynamics.

In many of the chemical processes taking place in apparatus of periodic operation there is a rather
broad range of variation in temperature (100-300°C), and the variations in the heat-transfer coefficients
thus reach significant magnitudes. For example, in the production of certain types of synthetic resins
the heat-transfer coefficients vary by factors of 2,5-3.5 [1, 2].

This makes absolutely clear the need for consideration of the effect of temperature in the heat-trans-
fer coefficients whose determination is best accomplished with application of the method of dynamic charac-
teristics [2].

The dynamics of heat exchange in periodic equipment can be described with sufficient accuracy [1-3]
by a nonlinear differential equation of the form

uw%ﬁﬂ+wwn=xm- (1)

The analytical derivation of the dynamics equation has demonstrated [1, 2] that for the various heat-
exchange methods a(y) and x(7) have the form:

from the saturated vapors of the heat carriers

a(y) = MW, (2
kiy) F
x(¥) =1, (2a)
from single-phase heat-transfer media
_ Me (y) , (3)
x (@)=t (32)
from the wall of the apparatus
_ Mc(y) | (4
W= LwrF
x (¥) = tw. (4a)

From (2)-(4) it is not difficult to determine the coefficients of heat transfer* and of heat exchange,
these being functions of y(1). The heat capacity as a function of temperature, i.e., c({y), must be known in

*1It is easy to make the transition from the heat-transfer coefficients to the heat-exchange coefficients by
means of the Wilson method [4].
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advance and for the majority of cases can be approximated by the linear relationship
¢(y) =P+ Py, (5)
whose coefficients Py and P; are found from the known tabulated values by the method of least squares.

Consequently, the problem of calculating the heat-exchange coefficients reduces to the determination
of a(y), which is best accomplished by an experimental —analytical method whose essence involves the fol~
lowing. Let us set up the following experiment in the equipment being investigated, and for the time in-
terval [0, Ty] let us write the functions xex(7{) and yex(Ti), together with the random perturbations imposed
on these. These functions are found most frequently in a table for the values of xgx(77) = Xaxis Vex(T)
= Yexi i=90,1,2,...,n),.

Further, let us compile the functional
1ﬂ
O = f [tex(t) —y (M]*d7 (6)
0

or the function

n

O =¥ [gest) —y ]2 (62)

=0

In these expressions y(7 is the solution of (1) for x(7) = Xex(T), 0 =7 =, and y(0) = yex(0). In (1)
we have to choose the function a(y) for which the functional attains its minimum, Most probably, ¢ > 0,
since (1) describes the dynamics of the apparatus only approximately. If we can find a(y) from this condition,
Eq. (1) will best describe the heat-exchange process of a specific piece of equipment (within the framework
of similar relationships), since with yoyx(7) we take into consideration all of that piece of equipment's in-
dividual features, e.g., deposition on the walls, etc.

The formulated problem is a variational problem with a conditional extremum, and the use of the
Lagrange method for its solution is made difficult by the absence in (6) of the extremal afy) and its first
derivative. We will therefore offer two methods below for an approximate determination (using a digital
computer) of the function a(y) from the experimentally found values of xex(7) and yex(7).

Let us assume that xex(7) = Xex(7) + zx(7) and yex(7) = Jex(7) + zy(7), where zx(r) and zy(7) are nor-
mally distributed perturbations with zero mathematical expectations; Xex(7) and Yex(™ are smooth mono~-
tonic functions. The sources for the appearance of zx(7) and zy(7) are the errors in the measurement of
Xex(7) and yex(7) during the course of the experiments, as well as random fluctuations in the observed
parameters, the effect of factors for which no provision had been made, etc. Let us approximate the tab-
ulated functions xexi, yexi (i = 0,1, 2,..., n) by the orthogonal Chebyshev polynomials with a weighting
function equal to unity, and we find

":ex('c): Ecxfh (T)ZZHT?‘, (7
A= A=0
- I &
Yex(®) = N 1.4 (1) == 3 dy 7 (8)
A=0 A=0

It is obvious that ¢ 3(7) are polynomials of degree A, while c) are constant Fourier coefficients cal-
culated from the familiar formulas of (5). Then rj and d) are easily found in terms of c) and @)(r), after
cancellation of similar terms. The values of m and k are chosen so as to filter out the perturbations zx(T)
and zy(7) and not to distort the significant singularities of §ex('r) and yex(7). For this we can use one of
two methods.

Let us specify the value m = m, (usually m; is a small number, e.g., my = 1), and we will calculate

1

2 [xex = ’Zex (Ti)JZ' )

i=0

D [x (my)] =
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Fig. 1. Relationship giving x and y as functions of time:
1) x1(7); 2) y1(r); 3) y1(n; 4) yuu(r).

We will then assume my = my + 1, we will find D[x(m; + 1)], and we will compare the dispersions, If
D[x(m,)] is substantially larger than D[x(m; + 1)], for example, by 20-40%, we assume m is equal to m; + 2,
we determine D[x(m + 2)], andthelatteris compared with the dispersion for Dix(m + 1)]. With a slight dif-
ference between the values of D[x(m;)] and Dix(m, + 1)] we take the quantity m; for m.

The second method of finding m or k will be used if zy(7) and zy('r) are governed exclusively by the
measurement errors. If Ax is the greatest error in the measurement of Xgx(7) — determined by the class
of the instrument — we have the relationship Dix(m)] = (Ax /3)%, from which we can find the value of m.*
The orthogonality of (7) and (8) simplifies the problem of calculating r) and dj in chosing m and k.

Further, assuming that x(1) = Xex(7) and y(7) = yex(7), we find a(7) from (1) as a function of time:

m

k
Tt —b Z d, T
0 h=0 (10

a(t) =12 -
2 Ad, o1
A==l

The denominator in (10) is found by the differentiation operation, which here does not result in the
appearance of significant errors, since the perturbation zy('r) has been separated from yex(7).

Substantial errors arise only when yex(T) ~ const at certain segments. These segments are usually
found at the beginning and end of the interval [0, Tn]. To reduce the error in the determination of a(1) we
must eliminate the segments with ygx(7) = const from our examination during the course of the calculation.

Comparing the values of a(7;) with yex(rj), we obtain
!
a) = ¥ oy, (11
A=0

where the coefficients qj are found by the method of least squares.

The accuracy in the determination of a(y) by this method, as a rule, is completely acceptable for
engineering calculations. However, our assumptions to the effect that the bounds of the mathematical ex-
pectations zx (1) and zy('r) are equal to zero, while y(7) = yex(r) when 0 < 7 < T, are rather rigid, and
what is most important, frequently cannot be verified. These can be found in the determination of a(y) by
the second method, i.e., an iteration method.

Let us expand a(y) in series in powers of y, i.e.,
!
aly)= 7 ay (12)
A=0
We will specify the values of I, assuming usually that I = 3-5, Having substituted (12) into (1) and

having found the solution y(71) for x(7) = xgx(7) by some numerical method, we determine the magnitude of
&, Expressions (6) or (6a) have now been turned into a function of the unknown variables q). Consequently,

*The determination of k is handled in a similar fashion.
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to determine a(y) we have to find the set q) for which the function & attains the local conditional minimum,
The minimization problem is solved by agradient method. We find the point of minimum ¢ by the iteration
formula for [6], successively for each j-th iteration ¢ = 0, 1, 2,..., n) with the iteration interval h

0®/0g,

RN
V'S oy
A=0

The partial derivatives 9% /6q) are calculated by a different method. To speed up the process of
finding the minimum ¢ we have to assume the q) from (11) as the initial approximation of q{, thus sim-
ultaneously determining the choice of the order of the polynomials, Since both methods of determining a(y)
use the same initial data, it is expedient to compile a single calculation program for the digital computer,

gt =g —h (13)

Let us explain the above method in an example of determining a(y) for reactors: with an induction
heating method (curves x1(7) and y1(r), see Fig., 1); with a jacket heated by the saturated vapors of a high-
temperature organic heat carrier, i.e., ditolylmethane (x17(r) = const = 300°C, yi1(7), see Fig.1); with an
external coil heated by a single-phase liquid TAS-190 organic silicon heat carrier (x[11(r) = const = 250°C,
yHI(T), see Fig. 1),

We have thus presented the following methods of achieving heat exchange with the material in the ap-
paratus: heat exchange with the wall of the apparatus, the transfer of heat from the film condensate, and the
transfer of heat from a single-phase liquid heat carrier.

Let us present the experimentally derived data as polynomials of the form of (7) and (8) with my = k;
=2 and my =k, = 3. Since Dfx;(m,)] = 77.98 [°C%, and Dixy{mp} = 77.47 [°C%, in the interval 0 < 7 < 220
min we can approximate X1(7) by the expression

%, (1) = 70.548 +0.592t+0.13- 1072 2. (14)

Similarly, for yy(7) we have [D{y;(k)} = 19,083 [°C% and Dly,;(ky] = 17.11 [°C%, and therefore, for the
same time interval

g, (1) = 39.362 + 0.730 ¢ 4 0.728- 1078 2. (15)
In similar fashion, we obtain the polynomials for the remaining two cases:
Yy (1) = 21,898 -+ 4.286 T — 0.0273 v - 0.707.107% 13 (16)
when 0 <1< 105 min,
Yy (1) = 36.559 + 5.566 1 — 0.0444 % 4 0.1279.1072 12

17
when 0 v < 115 min, {170
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Having differentiated (15) with respect to  and havingsubstituted y(7), y1(7), and xj(7) into (10), we
calculate a(7j) at the point 7; for At =7, — 7y =5 min, i =0, 1,..., 45. It is then easy to find the graph~
ical function a(y), plotting the values of yIex(7i) and ey(7;) along the axes (see curve I in Fig,2). We ap-
proximate the table of correspondences |ylex(Ti), ai(7i) | by the polynomial

a; (yy) = 52.37427 — 0.366704 y, + 0.9506- 1072 2. (18)
The chosen degree of the polynomial becomes understandable from comparison of the dispersions
D (g ()] =9.94 [°C*, D [4 ()} = 0563 [°C?), D [a, (3)] = 0.394 [°C?].

For the two remaining apparatuses, we obtain the graphical relationships in a similar manner (see
curves I and III in Fig.2), as well as the approximation polynomials:

ay; (y) = 68.33467 — 0.152847 y -+ 0.1071-1072 42, — 0.3184.107 [/ (19)

ayyy () = 50.0595 — 0.369444 y,,, + 0.2752- 1072, — 0.8561-107 43, (20)
with D [a;; (3)] = 0.48 [C*andD [ay; (3)] = 1.398 [°C2].

The function apy(y) for 243.5 = yp(r) = 247.1 is negative, and as was explained above, this is not a
physical paradox — a negative heat-exchange coefficient — but is a result exclusively of an error in differ-
entiation, since beginning with 7 = 85 min, yir(T) becomes virtually constant. Since the accuracy with
which the heat-exchange coefficient is calculated about the zero value of yirr(7) is low, it is advisable to
reduce the interval for the specification of the experimental data and of functions (17) and (20) to [0, 85] min,
eliminating the points from yr1(90) to yyr1(115) from our consideration, since these are virtually indistin-
guishable from one another.

The coefficients for the derived equations (18)-(20) are further refined by the gradient method. To
calculate the partial derivatives we have test increments Aqj, amounting to 1-2% of the found values of qj;
the quantity h amounts to 3-5% of Y for ®(q,J*1) < ®(g)J) and begins to diminish by half with each interval
as the inequality is disrupted; Eq. (1) was integrated on the computer by the Runge—Kutta method
with a variable interval. The initial values of the function &, respectively, amounted to

D, (g§) = 90.175; Dy (¢9) = 38.559and D, (¢0) = 581.83.

After descent from q% onthe basis of (13), stopping with the reductionofh tothe number 2-9 (the problem
was solved on a computer with 42 binary digits), we found the minimum values of the functions

D:®, = 89.4; O, = 36.26; ®,; = 143.243,
As a result of these calculations* the final functions a(y) assume the form:

a, (y) = 52.37426 — 0.366222 yp -+ 0.944354. 1072 42
when 37.1 < Y < 236.2,
a;; (y) = 68.33766 — 0.152847 Yy + 0.10721-1072 2, — 0.3285-107° U (194a)
when 20.15 <y, < 253.45,
ayy () = 52.000 — 0.3694 y,, + 0.2752.1072 Yy — 0.8586- 1075
when 40.1 < yp; < 243.55.

(182)

Y (202)

It follows from analysis of the calculation results that the coefficients for the expansion of ay(y) and
aq1y), found by the approximation method, are rather close to the values of q) which minimize . The co-
efficients of the series gr71(y) varied more significantly (the function & diminshed from 581,83 to 143,243),
and this can be explained by the fact that the coefficients of Eg. (20) had not been accurately determined be-
cause of the presence — in the experimental curve - of a segment in which the temperature of the material
underwent virtually no change,

The concluding stage of the operation is the determination of the heat-exchange coefficients for all of
the above-considered cases on the basis of the following formulas:
M (21)
a, ) FI
*The machine time for the calculation of a(y) for an average-capacity digital computer is 2-5 sec; from
1 to 5 min are needed for purposes of refinement by the gradient method.

o (y) =
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Myc ) (22)

3 =
u () ay () Fryr
W 1 ) (23)
kIII (y) = ? In ————1 - MIHC (y)
o ) W

In these examples c(y) = 1.83 + 0,485 -107% y is the heat capacity of the material in the apparatus;
Mj = 450 kg; Myp = M[IT = 1365 kg; FI = 3.0 m% Fpy = 5.5 m% Fypp = 8.5 m% W = 16 kW/degC.

The resulting relationships for the heat-exchange coefficients are shown in Fig. 3,
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NOTATION

is the temperature of the material in the apparatus, °C;

is the temperature effect from the heat-transfer medium or from the wall of the appa-
ratus, °C;

is a continuous function of y(7), min;

is a constant factor for most of the equipment, i.e., b = 1.02-1,05;

is the time, min;

is the mass of the material, kg;

is the heat capacity of the material, kJ/kg- deg C;

are, respectively, the heat-exchange and heat-transfer coefficients, kW/m?.deg C;

is the water equivalent of one-phase heat-transfer media, kW/deg C;

is the heat-exchange surface, m¥%

are, respectively, the temperatures of the saturated vapors, of the one-phase heat-trans-
fer medium at the inlet to the apparatus, and of the walls of the apparatus, °C.

LITERATURE CITED

I. Lazebnik and E., B. Manusov, Khim. Prom., No.12, 894 (1964).

. B.
V.
. A,
S.

Manusov, Inzh. Fiz. Zh,, 12, No.2 (1967),

Kafarov and V. V, Biryuko?r-,- Khim, Prom., No. 12, 908 (1963).

Holland and F. S, Chapman, Liquid Mixing and Processing in Stirred Tanks, New York (19686).
Guter and B. V. Ovchniskii, Elements of Numerical Analysis and Mathematical Processing of

Experimental Results [in Russian], Fizmatgiz (1962).

1. A,
2. E
3. V.
4. F
5. R.
6.

B. P, Demidovich and I. A, Maron, Fundamentals of Calculational Mathematics [in Russian], Fiz-

matgiz (1960).

331



